Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Teng-Jin Khoo,^a Andrew R. Cowley,^b David J. Watkin,^b M. Ibrahim M. Tahir^a and Karen A. Crouse^a*

^aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia, and ^bChemical Crystallography, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, England

Correspondence e-mail: teng-jin@rocketmail.com

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.043 wR factor = 0.049Data-to-parameter ratio = 10.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(3-Pyridylmethylene)-*N*'-[5-(3-pyridylmethylsulfanyl)-1,3,4-thiadiazol-2-yl]hydrazine

In the crystal structure of the title compound, $C_{14}H_{12}N_6S_2$, the molecules are linked into centrosymmetric dimers through $N-H\cdots N$ hydrogen interactions, forming two-dimensional layers parallel to (010).

Received 30 August 2005 Accepted 20 September 2005 Online 28 September 2005

Comment

1,3,4-Thiadiazole derivatives have been synthesized for their potential bioactivity. They have been used as herbicides and insecticides, and some of them are known to possess antimycobacterial, anesthetic and antidepressant activity (Demirbas *et al.*, 2004; Mamolo *et al.*, 2001; Orú *et al.*, 2004). The structure can be varied to explore the structure—activity relationship by substituting the alkyl or aryl groups at either end of the molecule. In the course of our research, we have managed to grow crystals of the title compound, (I), from ethanol.

In the crystal structure, the molecule is L-shaped, with the pyridine ring containing N1 bent at C6 with an angle of 112.42 (16)° for C4—C6—S1, while the rest of the molecule is nearly coplanar with the thiadiazole plane. The pyridine rings are *trans* to each other, as shown in Fig. 1. The C7—S2—C8 bond angle of 85.84 (11)° is at the lower end of the range reported in the literature (Vinkovic *et al.*, 1994), possibly due to the presence of two strong electron-donating atoms (S1 and N4) at either side of the ring. In the crystal structure, the molecules are linked through N—H···N hydrogen interactions (Table 2) into centrosymmetric dimers, forming two-dimensional layers parallel to (010).

Experimental

The title compound was synthesized according to the procedure described by Crouse *et al.* (2004). Brown–orange block-shaped crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of an ethanol solution of the crude product at room temperature.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

$C_{14}H_{12}N_6S_2$
$M_r = 328.42$
Triclinic, $P\overline{1}$
a = 4.5955 (2) Å
b = 11.4301 (4) Å
c = 14.8292 (6) Å
$\alpha = 74.1696 \ (12)^{\circ}$
$\beta = 83.0827 (14)^{\circ}$
$\gamma = 80.8197 (13)^{\circ}$
$V = 737.36 (5) \text{ Å}^3$

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)

 $T_{\min} = 1.00, T_{\max} = 1.00$ 5604 measured reflections

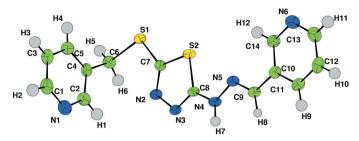
Refinement

Refinement on F

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.049$ S = 1.072154 reflections 203 parameters H atoms treated by a mixture of independent and constrained refinement Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, Z = 2 $D_x = 1.479$ Mg m⁻³ Mo $K\alpha$ radiation Cell parameters from 2920 reflections $\theta = 1-27^\circ$ $\mu = 0.37$ mm⁻¹ T = 150 K Block, brown–orange $0.01 \times 0.01 \times 0.01$ mm

3327 independent reflections 2154 reflections with $I > 3\sigma(I)$ $R_{\rm int} = 0.026$ $\theta_{\rm max} = 27.6^{\circ}$ $h = -5 \rightarrow 5$ $k = -14 \rightarrow 14$ $l = -18 \rightarrow 19$

1982), [weight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) \cdots + A_{n-1}]*T_{n-1}(x)]$, where A_i are the Chebychev coefficients listed below and $x = F/F_{\text{max}}$. Method = robust weighting (Prince, 1982), $W = [\text{weight}] * [1 - (\delta F/6*\sigma F)^2]^2$, A_i are: 1.61, 0.745 and 1.30 (Δ/σ)_{max} < 0.001 $\Delta\rho_{\text{max}} = 0.39$ e Å $^{-3}$ $\Delta\rho_{\text{min}} = -0.32$ e Å $^{-3}$


Table 1Selected geometric parameters (Å, °).

S1-C6	1.831 (3)	N2-C7	1.298 (3)
S1-C7	1.746 (3)	N3-C8	1.310 (3)
S2-C7	1.750 (3)	N4-N5	1.372 (3)
S2-C8	1.727 (2)	N4-C8	1.357 (3)
N1-C1	1.336 (5)	N5-C9	1.281 (3)
N1-C2	1.344 (4)	N6-C13	1.344 (4)
N2-N3	1.392 (3)	N6-C14	1.344 (4)
C6-S1-C7	100.67 (12)	C4-C6-S1	112.42 (18)
C7-S2-C8	85.84 (11)	S2-C7-S1	119.78 (14)
C1-N1-C2	116.9 (3)	S2-C7-N2	114.84 (19)
N3-N2-C7	112.2 (2)	S1-C7-N2	125.4 (2)
N2-N3-C8	111.8 (2)	S2-C8-N4	122.56 (19)
N5-N4-C8	117.9 (2)	S2-C8-N3	115.38 (18)
N4-N5-C9	115.5 (2)	N4-C8-N3	122.1 (2)
C13-N6-C14	117.3 (3)	N5-C9-C10	120.9 (2)
N1-C1-C3	123.3 (3)	C12-C13-N6	123.2 (3)
N1-C2-C4	124.3 (3)	C10-C14-N6	123.7 (3)

Table 2 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$N4-H7\cdots N3^{i}$	0.90 (4)	1.98 (4)	2.849 (3)	164 (3)

Symmetry code: (i) -x, -y + 1, -z.

Figure 1The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The N-bound H atom was located in a difference map and refined freely. All C-bound H atoms were located in a difference map and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C–H 0.93–98 Å) and isotropic atomic displacement parameters [$U_{\rm iso}({\rm H})=1.2~{\rm or}~1.5 U_{\rm eq}({\rm parent~atom})$], after which they were refined with riding constraints.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Khoo Teng Jin gratefully acknowledges MOSTI, Malaysia, for an attachment grant under an NSF scholarship, and the Chemical Crystallography Laboratory, Oxford University, for instrumental facilities.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Ali A. M., Yamin, B. M, Kasbollah, A., Fun, H.-K. (2004). *Polyhedron*, 23, 161–168.

Demirbas, N., Karaoglu, S. A., Demirbas, A., Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804.

Mamolo, M. G., Falagiana, V., Zampieri, D., Vio, L., Banfi, E. (2001). Il Farmaco, 56, 587–592.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Orú, E. E., Rollas, S., Kandemirli, F., Shvets, N., Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.

Vinkovic, M., Mutak, S., Nagl., A. & Kamenar, B. (1994). Acta Cryst. C50, 1099–1101.

Watkin, D. J. (1994). Acta Cryst. A50, 411-437.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.