Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Teng-Jin Khoo, ${ }^{\text {a }}$ Andrew R. Cowley, ${ }^{\text {b }}$ David J. Watkin, ${ }^{\text {b }}$ M. Ibrahim M. Tahir ${ }^{\text {a }}$ and Karen A. Crouse ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia, and ${ }^{\mathbf{b}}$ Chemical Crystallography, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, England

Correspondence e-mail:
teng-jin@rocketmail.com

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.049$
Data-to-parameter ratio $=10.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(3-Pyridylmethylene)- N^{\prime}-[5-(3-pyridylmethyl-sulfanyl)-1,3,4-thiadiazol-2-yl]hydrazine

In the crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}_{2}$, the molecules are linked into centrosymmetric dimers through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen interactions, forming two-dimensional layers parallel to (010).

Comment

1,3,4-Thiadiazole derivatives have been synthesized for their potential bioactivity. They have been used as herbicides and insecticides, and some of them are known to possess antimycobacterial, anesthetic and antidepressant activity (Demirbas et al., 2004; Mamolo et al., 2001; Orú et al., 2004). The structure can be varied to explore the structure-activity relationship by substituting the alkyl or aryl groups at either end of the molecule. In the course of our research, we have managed to grow crystals of the title compound, (I), from ethanol.

(I)

In the crystal structure, the molecule is L -shaped, with the pyridine ring containing N 1 bent at C 6 with an angle of $112.42(16)^{\circ}$ for $\mathrm{C} 4-\mathrm{C} 6-\mathrm{S} 1$, while the rest of the molecule is nearly coplanar with the thiadiazole plane. The pyridine rings are trans to each other, as shown in Fig. 1. The C7-S2-C8 bond angle of $85.84(11)^{\circ}$ is at the lower end of the range reported in the literature (Vinkovic et al., 1994), possibly due to the presence of two strong electron-donating atoms (S1 and $\mathrm{N} 4)$ at either side of the ring. In the crystal structure, the molecules are linked through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen interactions (Table 2) into centrosymmetric dimers, forming twodimensional layers parallel to (010).

Experimental

The title compound was synthesized according to the procedure described by Crouse et al. (2004). Brown-orange block-shaped crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of an ethanol solution of the crude product at room temperature.

Received 30 August 2005 Accepted 20 September 2005 Online 28 September 2005

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{~S}_{2}$
$M_{r}=328.42$
Triclinic, $P \overline{1}$
$a=4.5955$ (2) \AA
$b=11.4301$ (4) A
$c=14.8292(6) \AA$
$\alpha=74.1696$ (12) ${ }^{\circ}$
$\beta=83.0827(14)^{\circ}$
$\gamma=80.8197(13)^{\circ}$
$V=737.36(5) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan
DENZO/SCALEPACK
(Otwinowski \& Minor, 1997)
$T_{\text {min }}=1.00, T_{\text {max }}=1.00$
5604 measured reflections

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.049$
$S=1.07$
2154 reflections
203 parameters
H atoms treated by a mixture of independent and constrained refinement
Method, part 1, Chebychev polynomial (Watkin, 1994; Prince,
$Z=2$
$D_{x}=1.479 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2920 reflections
$\theta=1-27^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, brown-orange
$0.01 \times 0.01 \times 0.01 \mathrm{~mm}$

3327 independent reflections
2154 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-5 \rightarrow 5$
$k=-14 \rightarrow 14$
$l=-18 \rightarrow 19$
1982), $[$ weight $]=1.0 /\left[A_{0} * T_{0}(x)+\right.$ $\left.\left.A_{1} * \mathrm{~T}_{1}(x) \cdots+A_{n-1}\right]^{*} T_{n-1}(x)\right]$, where A_{i} are the Chebychev coefficients listed below and $x=$ $F / F_{\text {max }}$. Method = robust weighting (Prince, 1982), $W=$ $[w$ eight $] *\left[1-(\delta F / 6 * \sigma F)^{2}\right]^{2}, A_{\mathrm{i}}$ are: $1.61,0.745$ and 1.30

$(\Delta / \sigma)_{\max }<0.001$

$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$.

S1-C6	$1.831(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.298(3)$
$\mathrm{S} 1-\mathrm{C} 7$	$1.746(3)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.310(3)$
$\mathrm{S} 2-\mathrm{C} 7$	$1.750(3)$	$\mathrm{N} 4-\mathrm{N} 5$	$1.372(3)$
$\mathrm{S} 2-\mathrm{C} 8$	$1.727(2)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.357(3)$
N1-C1	$1.336(5)$	$\mathrm{N} 5-\mathrm{C} 9$	$1.281(3)$
N1-C2	$1.344(4)$	$\mathrm{N} 6-\mathrm{C} 13$	$1.344(4)$
N2-N3	$1.392(3)$	$\mathrm{N} 6-\mathrm{C} 14$	$1.344(4)$
C6-S1-C7	$100.67(12)$	$\mathrm{C} 4-\mathrm{C} 6-\mathrm{S} 1$	$112.42(18)$
$\mathrm{C} 7-\mathrm{S} 2-\mathrm{C} 8$	$85.84(11)$	$\mathrm{S} 2-\mathrm{C} 7-\mathrm{S} 1$	$119.78(14)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$116.9(3)$	$\mathrm{S} 2-\mathrm{C} 7-\mathrm{N} 2$	$114.84(19)$
N3-N2-C7	$112.2(2)$	$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2$	$125.4(2)$
N2-N3-C8	$111.8(2)$	$\mathrm{S} 2-\mathrm{C} 8-\mathrm{N} 4$	$122.56(19)$
N5-N4-C8	$117.9(2)$	$\mathrm{S} 2-\mathrm{C} 8-\mathrm{N} 3$	$115.38(18)$
N4-N5-C9	$115.5(2)$	$\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 3$	$122.1(2)$
C13-N6-C14	$117.3(3)$	$\mathrm{N} 5-\mathrm{C} 9-\mathrm{C} 10$	$120.9(2)$
N1-C1-C3	$123.3(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{N} 6$	$123.2(3)$
N1-C2-C4	$124.3(3)$	$\mathrm{C} 10-\mathrm{C} 14-\mathrm{N} 6$	$123.7(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 7 \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.90(4)$	$1.98(4)$	$2.849(3)$	$164(3)$

[^0]

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The N -bound H atom was located in a difference map and refined freely. All C-bound H atoms were located in a difference map and initially refined with soft restraints on the bond lengths and angles to regularize their geometry ($\mathrm{C}-\mathrm{H} 0.93-98 \AA$) and isotropic atomic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2\right.$ or $1.5 U_{\text {eq }}$ (parent atom) $]$, after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Khoo Teng Jin gratefully acknowledges MOSTI, Malaysia, for an attachment grant under an NSF scholarship, and the Chemical Crystallography Laboratory, Oxford University, for instrumental facilities.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Ali A. M., Yamin, B. M, Kasbollah, A., Fun, H.-K. (2004). Polyhedron, 23, 161-168.
Demirbas, N., Karaoglu, S. A., Demirbas, A., Sancak, K. (2004). Eur. J. Med. Chem. 39, 793-804.
Mamolo, M. G., Falagiana, V., Zampieri, D., Vio, L., Banfi, E. (2001). Il Farmaco, 56, 587-592.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Orú, E. E., Rollas, S., Kandemirli, F., Shvets, N., Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760-6767.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
Vinkovic, M., Mutak, S., Nagl., A. \& Kamenar, B. (1994). Acta Cryst. C50, 1099-1101.
Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

[^0]: Symmetry code: (i) $-x,-y+1,-z$.

